Matemática e a Bíblia

J. C. Keister

Tradução: Felipe Sabino de Araújo Neto1

Nota do editor: Muitos cristãos, talvez a maioria, pensem que o versículo citado no cabeçalho dos nossos textos² é uma bela poesia: parece bonita, mas não significa nada. Nós não! Quando Paulo escreveu que ele demolia argumentos para trazer todo pensamento obediente a Cristo, ele estava falando literal e precisamente. Edições anteriores da nossa revista demoliram muitos argumentos não-cristãos, desde a lei natural à ciência e o behaviorismo. Com "Matemática e a Bíblia", o dr. Keister está fazendo algo inusitado, pois ninguém (pelo que sabemos) jamais tentou antes basear a aritmética sobre a Bíblia. O ensaio que se segue é um grande passo em direção à defesa do sola Scriptura e à atividade crítica de sistematizar todo conhecimento sobre o axioma da revelação. Há tempos, os cristãos têm mantido uma teoria de dupla fonte da verdade: Eles pensam que a matemática, ou ciência, ou histórica, ou lógica, ou o senso comum fornecem aos homens a verdade em adição a Bíblia. Eles até mesmo cunharam um slogan maravilhosamente ambíguo e eclético para expressar tal visão: "Toda verdade é verdade de Deus". Mas é nossa posição - e a posição da própria Bíblia, cremos – que somente é verdadeiro aquilo que é explicitamente declarado nas Escrituras ou pode ser deduzido por consequência boa e necessária - por lógica - das Escrituras. A verdade de Deus é toda a verdade. "Matemática e a Bíblia" abre-nos um novo território na apologética cristã. Esperamos que você, leitor, fique tão entusiasmado quanto nós com isso.

O propósito deste artigo é esboçar (muito brevemente) o status de diferentes crenças sobre os fundamentos da matemática, discutir o conteúdo de alguns artigos e livros que lidam com as visões cristãs da matemática e, finalmente, apresentar o que creio ser o próprio início de uma construção bíblica para os fundamentos da aritmética. Como veremos, as diferentes visões filosóficas levam a visões diferentes do que constitui uma prova matemática. Isso sugere que a autoridade para a verdade absoluta na matemática reside fora da própria matemática. Além do mais, embora os artigos cristãos que li até aqui sejam úteis e informativos, nenhum deles tentou uma construção bíblica para os fundamentos da matemática. É crido (por este autor, pelo menos) que, visto que a fonte última da verdade é a Bíblia, há uma necessidade real de começar com a Bíblia para ver o que pode ser estabelecido como fundacional na matemática.

As Diferentes Visões Filosóficas da Matemática

Atualmente, existem três diferentes visões filosóficas [principais] acerca da matemática: logicista, formalista e intuicionista.³

A filosofia logicista começa com a premissa de que a matemática é um ramo da lógica – que todas as declarações e teoremas matemáticos podem ser reduzidos a declarações dentro da estrutura da própria lógica.⁴

¹ E-mail para contato: <u>felipe@monergismo.com</u>. Traduzido em março/2007.

² Os textos publicados pela *The Trinity Review* têm o seguinte versículo no seu cabeçalho: "Porque as armas da nossa milícia não são carnais, e sim poderosas em Deus, para destruir fortalezas, anulando nós sofismas e toda altivez que se levante contra o conhecimento de Deus, e levando cativo todo pensamento à obediência de Cristo" (2Co. 10:4-5).

³ Max Black, *The Nature of Mathematics*, 1965, 7.

⁴ Black, 7-8.

A ênfase principal da visão formalista é que todas as fórmulas na matemática podem ser reduzidas a símbolos vazios de significado. Tudo que alguém precisa para provar algum teorema é usar os relacionamentos apropriados entre os símbolos estabelecidos por teoremas ou axiomas previamente provados. A aplicação é estabelecida quando os símbolos são usados para representar objetos no "mundo real".⁵

A terceira visão, a do intuicionismo, começa com a noção de que toda a verdade matemática é gerada dentro da mente do homem (intuição).⁶ Portanto, qualquer prova que em princípio não possa ser visualizada na mente de um homem não é válida.⁷ Essa visão é suplementada pela idéia de que todas as provas devem ser diretas, e não indiretas. A conclusão da filosofia intuicionista é essa: (1) Toda verdade na matemática está contida na mente do homem; e (2) as declarações matemáticas podem ser verdadeiras, falsas ou sem sentido (indecisível). Essa última idéia tem algumas vezes sido chamada de "lógica trivalente", ou negação da lei do meio excluído.⁸

Essas três filosofias da matemática estão em óbvio conflito (especialmente as primeiras duas com a terceira). Um argumento via *reductio ad absurdum* seria uma prova válida para aqueles que esposam as duas primeiras posições filosóficas, mas não seria válido para alguém que sustenta a última visão (intuicionista). Um proponente da posição intuicionista diria que o teorema em questão simplesmente não teria significado, a menos que provado positivamente com um número finito de passos visualizáveis. Assim, vemos que existe discórdia entre os matemáticos sobre o critério apropriado para uma prova efetiva. Além do mais, em 1935 Kurt Gödel⁹ mostrou que, dentro de qualquer das três estruturas, é impossível derivar todas as verdades matemáticas que poderiam em princípio ser estabelecidas. De fato, ele foi capaz de provar que qualquer sistema matemático é inconsistente ou incompleto. Além disso, pode ser impossível estabelecer se um dado axioma é ou não um suplemento necessário a uma determinada série de axiomas, ou inconsistente com a mesma. A prova de Gödel na verdade declarava que a fonte última da verdade na matemática reside fora do sistema da matemática.

Resumindo: Não existe concordância uniforme sobre todos os procedimentos de prova disponíveis na matemática (por uma prova dentro da própria matemática) e a autoridade para a verdade absoluta na matemática reside fora da própria matemática.

Livros e Artigos Cristãos sobre Matemática

Minha leitura de artigos e livros cristãos tem sido no máximo uma amostra. Todavia, parece que a ênfase dessas peças reside em uma ou mais das seguintes três categorias:

1. Críticas das três principais filosofias concorrentes da matemática. 10

-

⁵ Black, 9.

⁶ Black, 172.

⁷ Black, 10.

⁸ Black, 10, 195, and 196.

⁹ Reference mentioned on page 167 of Max Black.

¹⁰ Hadley Mitchell, *Ordinary Arithmetic and Theistic Presuppositions*, 1978 (unpublished); Hadley Mitchell, *Some Implications of Godel's Theorem*, 1979 (unpublished); Robert Brabenec, "The Impact of Three Mathematical Discoveries on Human Knowledge," *Journal of the American Scientific Association*, March 1978; Charles R. Hampton, "Epistemology to Ontology," *A Christian Perspective on the Foundation of Mathematics*, ed. Robert Brabenec (unpublished); Joseph Spradley, "Recent Parallels Between the Philosophy of Science and Mathematics," *A Christian Perspective on the Foundation of Mathematics*, ed. Robert Brabenec (unpublished); Vernon S. Poythress, "A Biblical View of Mathematics," *Foundations of Christian Scholarship: Essays in the Van Til Perspective*, ed. Gary North (Ross House Books, 1981); Math Conference on the "Christian Philosophy of Mathematics," Wheaton, Illinois, 1977; Math Conference on the "Christian Philosophy of Mathematics," Wheaton, Illinois, 1979.

- 2. Elogiar a utilidade e o valor prático da matemática, como um dom valioso de Deus para o homem.¹¹
- 3. Elogiar a estética da matemática como refletindo a mente de Deus, com exemplos de absolutos e infinitos.¹²

Louvor ao Senhor tem sido feito eloqüentemente pelos autores mencionados nas categorias 2 e 3, e seria presunçoso resumir o que eles fizeram tão bem. Na categoria 1, o bom criticismo tem sido nivelado a todas as três filosofias matemáticas. O ponto principal, sem dúvida, é que todas as três filosofias são essencialmente antropocêntricas, ou pelo menos contendem que a matemática é verdadeiramente independente da existência de Deus. O intuicionismo vai um passo adiante, contendendo que a verdade na matemática é encontrada explicitamente na mente do homem. Os autores citados têm entrado na análise desses problemas com maior profundidade que a minha aqui, e indico-os ao leitor interessado por informações adicionais.

Não obstante o valor desses artigos e livros, não vi artigo ou livro algum lidando com um tratamento especificamente bíblico dos fundamentos da matemática (isto é, aritmética, geometria, etc.). Isso de forma alguma é uma crítica aos autores acima; não era o intento deles escrever sobre essas questões. Sim, seria bom ver simplesmente o que a Bíblia diz sobre matemática, o que nos leva à próxima seção.

Declarações Bíblicas sobre a Matemática

Este autor examinou a Bíblia para tomar nota específica de referências matemáticas e vários problemas matemáticos. Existem pelo menos 150 referências à aritmética e à geometria no Antigo e Novo Testamento. Para ter uma idéia de algumas dessas referências, voltemos-nos para Gênesis, onde é dito:

Viveu Adão cento e trinta anos, e gerou um filho à sua semelhança, conforme a sua imagem, e lhe chamou Sete. Depois que gerou a Sete, viveu Adão oitocentos anos; e teve filhos e filhas. Os dias todos da vida de Adão foram novecentos e trinta anos; e morreu (*Gênesis* 5:3-5 *RA*).

Entre outras coisas, essa passagem particular declara que:

130 + 800 = 930.

130 + 600 = 930

Um exemplo de multiplicação está contida no Novo Testamento, onde é dito:

Tendo eles chegado a Cafarnaum, dirigiram-se a Pedro os que cobravam o imposto das duas dracmas e perguntaram: Não paga o vosso Mestre as duas dracmas? Sim, respondeu ele. Ao entrar Pedro em casa, Jesus se lhe antecipou, dizendo: Simão, que te parece? De quem cobram os reis da terra impostos ou tributo: dos seus filhos ou dos estranhos? Respondendo Pedro: Dos estranhos, Jesus lhe disse: Logo, estão isentos os filhos. Mas, para que não os escandalizemos, vai ao mar, lança o anzol, e o primeiro peixe que fisgar, tira-o; e, abrindo-lhe a boca, acharás um estáter. Toma-o e entregalhes por mim e por ti. *Mateus* 17:24-27 *RA*).

¹¹ Math Conference on the "Christian Philosophy of Mathematics," Wheaton, Illinois, 1977; Math Conference on the "Christian Philosophy of Mathematics," Wheaton, Illinois, 1979.

Math Conference on the "Christian Philosophy of Mathematics," Wheaton, Illinois, 1977; Math Conference on the "Christian Philosophy of Mathematics," Wheaton, Illinois, 1979; C. Ralph Verno, Kronecker; "Creation and Christianity," *Torch & Trumpet*, April 1970; C. Ralph Verno, "Mathematics in the Christian Philosophy of Life," *Torch & Trumpet*, December 1969.

Ora, um estáter era equivalente a quatro dracmas. Portanto, a passagem está dizendo (entre outras coisas), que:

 $(2 \text{ dracmas/pessoas}) \times (2 \text{ pessoas}) = 4 \text{ dracmas, ou de uma forma mais simples,}$

$$2 \times 2 = 4$$
.

Um problema de subtração está contido em:

No ano quarto, se pôs o fundamento da Casa do SENHOR, no mês de zive. E, no ano undécimo, no mês de bul, que é o oitavo, se acabou esta casa com todas as suas dependências, tal como devia ser. Levou Salomão sete anos para edificá-la (*1Reis* 6:37-38 *RA*).

Ou.
$$11 - 4 = 7$$
.

Existe uma referência à magnitude do *pi* (veja 1Reis 7:23-26), em que o diâmetro e a circunferência de um tanque redondo são especificados. Deveria ser notado que a largura da borda do recipiente precisa ser levada em conta, ¹³ em cujo ponto fica claro que o valor de *pi* obtido dividindo-se a circunferência pelo diâmetro correto está dentro de 1 por cento do valor real de *pi*. Visto que as próprias medidas não são absolutamente precisas (um erro de 1/8 por cento na medida do diâmetro não faria diferença no valor calculado e no valor real de *pi*), a correspondência é de fato considerável.

Frações são mencionadas em Levítico 27:27 e 32, e diferenças são mencionadas ou implicadas em Mateus 12:41-47 e Gênesis 18:24-32. Assim, parece que as operações básicas da aritmética são presumidas em várias passagens bíblicas.

Os Axiomas da Aritmética

Temos visto evidência do uso da matemática na Escritura. Em adição, as regras da aritmética são presumidas. Para ver isso como é isso, examinemos os axiomas básicos da aritmética:

```
1. a + 0 = a (identidade aditiva)
```

2. a + b = b + a (lei comutativa de adição)

3. (a + b) + c = a + (b + c) (lei associativa de adição)

4. $a \times 1 = a$ (identidade multiplicativa)

5. ab = ba (lei comutativa da multiplicação)

6. (ab)c = a(bc) (lei associativa da multiplicação)

7. a(b + c) = ab + ac (lei distributiva da adição)

8. Se a = b, então b = a (lei reflexiva)

9. Se b = c, então b + a = c + a (operação de adição idêntica)

10. Se b = c, então ab = ac (operação de multiplicação idêntica)

11. a + (-a) = a - a = 0 (definição de -a)

12. a x 1/a = 1(a pi) (definição de 1/a)

.

¹³ Harold Lindsell, *The Battle for the Bible*, Zondervan, 1976; 166.

Os métodos usados para mostrar que esses axiomas são ilustrados na Escritura são basicamente os mesmos daqueles usados para qualquer exegese bíblica. A Escritura é usada para esclarecer a Escritura, declarações equivalentes (matemáticas, neste caso) são substituídas onde se faz necessário, e qualquer generalização estabelecida é usada para ajudar a estabelecer outras generalizações (axiomas, neste caso). Ilustremos este conceito comutativo com a lei da adição:

Porque, daqui em diante, estarão cinco divididos numa casa: três contra dois, e dois contra três. (Lucas 12:52 *RA*).

Essa passagem é uma clara ilustração do axioma que:

$$a + b = b + a$$
; especificamente, ele declara que $3 + 2 = 2 + 3$.

Uma segunda ilustração de um dos axiomas é a seguinte:

Regra 3: Lei Associativa de Adição:
$$(a + b) + c = a + (b + c)$$

(i.e., não importa que haja parentêses no processo de adição):

Os filhos de Elioenai: Hodavias, Eliasibe, Pelaías, Acube, Joanã, Delaías e Anani; sete ao todo (*1 Crônicas* 3:24).

Ou,
$$1 + 1 + 1 + 1 + 1 + 1 + 1 = 7$$
.

O filho de Dã:

Husim.

Os filhos de Naftali:

Jazeel, Guni, Jezer e Silém.

São estes os filhos de Bila, a qual Labão deu a sua filha Raquel; e estes deu ela à luz a Jacó, ao todo sete pessoas. (*Gênesis* 46:23-25).

Ou,
$$(1+1) + [1+(1+1+1+1)] = 7$$

Assim, temos dois agrupamentos aditivos parentéticos produzindo 7 – um exemplo mostrando que os parênteses não importam na adição (isto é, a lei associativa de adição é verdadeira).

O terceiro e mais complicado axioma é o seguinte: a(b + c) = ab + ac (lei distributiva de adição),

E trouxeram a sua oferta perante o SENHOR: seis carros cobertos e doze bois; cada dois príncipes ofereceram um carro, e cada um deles, um boi; e os apresentaram diante do tabernáculo. Disse o SENHOR a Moisés: Recebe-os deles, e serão destinados ao serviço da tenda da congregação; e os darás aos levitas, a cada um segundo o seu serviço.

Moisés recebeu os carros e os bois e os deu aos levitas. Dois carros e quatro bois deu aos filhos de Gérson, segundo o seu serviço; quatro carros e oito bois deu aos filhos de Merari, segundo o seu serviço, sob a direção de Itamar, filho de Arão, o sacerdote. (Números 7:3-8).

Essas passagens (em efeito) declaram o seguinte:

(1)
$$2 (carros) + 4 (carros) = 6 (carros)$$

e

(2)
$$4 \text{ (bois)} + 8 \text{ (bois)} = 12 \text{ (bois)}$$

Em Mateus 17:24-27, descobrimos que $2 \times 2 = 4$. Usando isto no (2) acima, conseguimos:

(3)
$$(2 \times 2) + 8 = 12$$

Do Antigo Testamento:

Também doze leões estavam ali sobre os seis degraus, um em cada extremo destes. Nunca se fizera obra semelhante em nenhum dos reinos (1 Reis 10:20).

Ou, $12 = 2 \times 6$. Assim, (3) se torna:

$$\textbf{(4)} \ (2 \ x \ 2) + 8 = 2 \ x \ 6.$$

Agora, *Números* 7:3-8 é usado novamente para 6 = 2 + 4, transformando (4) em:

(5)
$$(2 \times 2) + 8 = 2 \times (2 + 4)$$
.

Se alguém vier a morrer junto a ele subitamente, e contaminar a cabeça do seu nazireado, rapará a cabeça no dia da sua purificação; ao sétimo dia, a rapará. Ao oitavo dia, trará duas rolas ou dois pombinhos ao sacerdote, à porta da tenda da congregação (*Números* 6:9,10)

Ou.
$$7 + 1 = 8$$
.

Seis coisas o SENHOR aborrece, e a sétima a sua alma abomina: olhos altivos, língua mentirosa, mãos que derramam sangue inocente, coração que trama projetos iníquos, pés que se apressam a correr para o mal, testemunha falsa que profere mentiras e o que semeia contendas entre irmãos. (*Provérbios* 6:16-19).

Ou,
$$7 = (1 + 1 + 1 + 1 + 1 + 1) + 1$$
.

Substituindo (1 + 1 + 1 + 1 + 1 + 1 + 1) + 1 por 7 na expressão para 8:

$$[(1+1+1+1+1+1)+1]+1=8.$$

Usando nossa lei associativa de adição, temos:

$$8 = (1 + 1 + 1 + 1) + (1 + 1 + 1 + 1).$$

De 1 Crônicas 9:24, temos:

Os porteiros estavam aos quatro ventos: ao oriente, ao ocidente, ao norte e ao sul.

Ou
$$4 = (1 + 1 + 1 + 1)$$

Assim 8 = 4 + 4; ou, 2 4's são 8 - simplesmente uma forma abreviada de dizer $8 = 2 \times 4$.

O espaço [aqui] não permite mostrar como esse procedimento funciona para cada axioma, mas existem referências suficientes (com a exceção da lei comutativa da multiplicação) para ilustrar cada um dos axiomas aritméticos na Escritura. Mesmo com o axioma da lei comutativa da multiplicação, deveria ser notado que 1 Reis 10:20: "Também doze leões estavam ali sobre os seis degraus, um em cada extremo destes...".

Essa passagem indica que $12 = 6 \times 2$. Tivesse a passagem declarado, "Também doze leões estavam ali, um em cada extremo, sobre os seis degraus..." (que corresponderia a dizer que $12 = 2 \times 6$), o significado permaneceria o mesmo. Assim, podemos confiar nos

axiomas da aritmética tanto quanto nos Dez Mandamentos, até onde diz respeito as nossas vidas. A Bíblia, ao usar estas leis em várias passagens, indica que a autoridade de Deus se estende sobre matemática, bem como outras áreas.

Conclusão

Este artigo tem a intenção de ser apenas um começo no problema de mostrar quais axiomas e procedimentos matemáticos são declarados ou presumidos pela Escritura. Espera-se que mais esforço possa se seguir a estas linhas, mostrando quais axiomas matemáticos são biblicamente corretos e quais não. Desta forma, poderemos superar as ciladas do teorema de Gödel com a confiança que os fundamentos da verdade matemática são tão confiáveis quanto a Palavra de Deus.

Fonte: The Trinity Review, Setembro/Outubro 1982.